L. Ibn Khaldoun	Ibn Khaldoun DEVOIR DE SYNTHESE 1	
RADES		Durée : 2 h
Mr ABIDI Farid	Mathématiques	Décembre 2013

Exercice 1: (4 points)

Répondre par Vrai ou Faux à chacune des questions suivantes. Aucune justification n'est demandée.

1. (\vec{i}, \vec{j}) est une base orthonormée de l'ensemble des vecteurs du plan. On considère les vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

- a) \vec{u} et \vec{v} sont colinéaires si, et seulement si, x.y' + y.x' = 0.
- b) \vec{u} et \vec{v} sont orthogonaux si, et seulement si, $x \cdot x' + y \cdot y' = 0$.
- c) $\|\vec{u}\| = x^2 + y^2$.
- 2. Soit a un réel non nul, b et c deux réels quelconques.
 - a) Si l'équation $ax^2 + bx + c = 0$ admet une seule solution x_0 alors pour tout $x \ne x_0$, $ax^2 + bx + c$ est du signe de a.
- b) Si $b^2 4ac < 0$ alors $ax^2 + bx + c$ ne change pas de signe sur \mathbb{R} .
- c) Si x_1 et x_2 sont les solutions de l'équation $ax^2 + bx + c = 0$, alors $x_1 + x_2 = \frac{b}{a}$.
- 3. Soit n un entier supérieur ou égale à 1.
- Si P est un polynôme de degré n et si α est un zéro de P alors P est factorisable par $x \alpha$.

1/3

Exercice 2: (7 points)

1. On pose, pour tout x réel, $f(x) = 3x^2 - 6x - 24$.

Résoudre dans \mathbb{R} l'équation f(x) = 0.

2. Soit g le polynôme défini par $g(x) = 12x^3 + 12x^2 - 21x + 6$.

Calculer g(-2) puis déterminer les réels a , b et c tels que pour tout x réel , $g(x) = (x+2)(ax^2 + bx + c)$.

- 3. On pose $h(x) = \frac{g(x)}{f(x)}$.
 - a) Donner l'ensemble D de définition de h.

- b) Vérifier que, pour tout x de D, $h(x) = \frac{4x^2 4x + 1}{x 4}$.
- c) Résoudre dans \mathbb{R} l'inéquation $h(x) \ge 0$.

Exercice 3: (9 points)

Une unité de longueur étant choisie. Soit A et B deux points distincts du plan tel que AB = 3.

Soit O le point tel que $\overrightarrow{AO} = -\frac{1}{3}\overrightarrow{AB}$. On désigne par C un point tel que OC = AB et les droites (AB) et (OC) sont perpendiculaires. On note J le milieu du segment [OC].

L'annexe ci-jointe à la page 3/3 est à compléter et à rendre avec la copie.

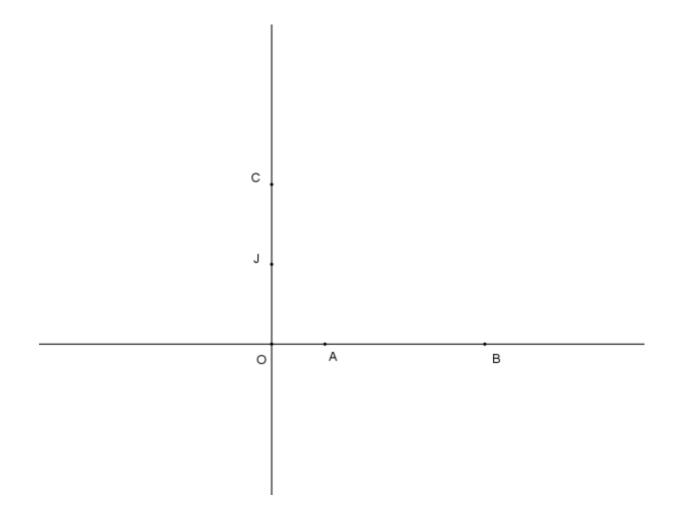
1. Soit I barycentre des points pondérés (A,2) et (B,1).

Ecrire \overrightarrow{AI} en fonction de \overrightarrow{AB} . En déduire que I est le symétrique de O par rapport à A.

- 2. Montrer que $3\overrightarrow{JO} + 3\overrightarrow{JC} = \overrightarrow{0}$. En déduire que J est le barycentre des points pondérés (A,4), (B,-1) et (C,3).
- 3. Soit K le barycentre de (I, 2) et (C, 1). On considère le repère cartésien $\left(O, \overrightarrow{OA}, \frac{1}{3}\overrightarrow{OC}\right)$.
 - a) Déterminer les coordonnées des points A, B, C, I et J puis montrer que $K\left(\frac{4}{3},1\right)$.
 - b) Montrer que les points B, J et K sont alignés. En déduire une construction du point K.
- 4. Soit H l'image de J par la translation de vecteur \overrightarrow{AB} et H' le projeté orthogonal de H sur la droite (AB).
 - a) Placer H et H' sur la figure.
 - b) Soit \mathscr{C} le cercle de centre J et passant par O. Déterminer et représenter $\mathscr{C}' = t_{\overline{AB}}(\mathscr{C})$.
- 5. Soit M un point variable différent de O sur la droite (OC). La parallèle à la droite (AB) coupe la droite (HH') en N.
- a) Montrer que $t_{\overrightarrow{AB}}(M) = N$.
- b) Déterminer et représenter l'ensemble des points N lorsque M varie sur (OC)\{O} ?

Annexe à compléter et à rendre avec la copie

Nom de l'élève :



CORRIGE

Exercice 1:

- 1. a) Faux
 - b) Vrai.
 - c) Faux.
- 2. a) Vrai.
 - b) Vrai.
 - c) Faux.
- 3. Vrai.

Exercice 2: (7 points)

1. On a, pour tout x réel, $f(x) = 3x^2 - 6x - 24$.

L'équation f(x) = 0 est équivalente à $3x^2 - 6x - 24 = 0$.

Son discriminant réduit est $\Delta' = (-3)^2 - 3 \times (-24) = 81$. L'équation f(x) = 0 admet donc deux racines : $x_1 = \frac{3-9}{3} = -2$ et $x_1 = \frac{3+9}{3} = 4$.

Ainsi, l'ensemble des solutions de l'équation f(x) = 0 est $\{-2, 4\}$.

2. Soit g le polynôme défini par $g(x) = 12x^3 + 12x^2 - 21x + 6$.

$$g(-2) = 12.(-2)^3 + 12.(-2)^2 - 21.(-2) + 6 = -96 + 48 + 42 + 6 = 0$$
.

Pour tout x réel, $g(x) = (x+2)(ax^2+bx+c) = ax^3+(b+2a)x^2+(c+2b)x+2c$.

D'où
$$\begin{cases} a = 12 \\ b + 2a = 12 \\ c + 2b = -21 \\ 2c = 6 \end{cases} \quad donc \quad \begin{cases} a = 12 \\ b = -12 \\ c = 3 \end{cases}$$

3. On pose $h(x) = \frac{g(x)}{f(x)}$.

a) h(x) est défini équivaut à $f(x) \neq 0$ équivaut à $x \neq -2$ et $x \neq 4$.

Donc, l'ensemble de définition de h est $D = \mathbb{R} \setminus \{-2, 4\}$.

b) Pour tout x de D,

$$h(x) = \frac{g(x)}{f(x)} = \frac{(x+2)(12x^2 - 12x + 3)}{3(x+2)(x-4)} = \frac{3(4x^2 - 4x + 1)}{3(x-4)} = \frac{4x^2 - 4x + 1}{x-4}.$$

c) L'inéquation $h(x) \ge 0$ est équivalente à $\frac{4x^2 - 4x + 1}{x - 4} \le 0$.

Remarquons que : $4x^2 - 4x + 1 = (2x - 1)^2$.

X	-∞	-2	$\frac{1}{2}$	2	4 -∞
$4x^2 - 4x + 1$	+	+	0	+	+
x-4	-	-		-	+
h(x)	-	-	0	-	+

Donc l'ensemble des solutions est $\left\{\frac{1}{2}\right\} \cup \left]4,+\infty\right[$.